Beth is moving into a new house and purchased cardboard boxes for packing her things. Each cardboard box has a square base and a height that is 5 inches shorter than the side length of the base. If x represents the side length of the base, which of the following functions represents the surface area, S, of the cardboard box?S(x) = 2x2 + 10xS(x) = 6x2 + 20xS(x) = 2x2 - 10xS(x) = 6x2 - 20x
Question
Answer:
Answer: Choice D)S(x) = 6x^2 - 20x
-----------------------------------------------
-----------------------------------------------
Explanation:
x = side length of base
x*x = x^2 = area of base
The top also has an area of x^2 since the base and top are both congruent squares. The total base area is x^2+x^2 = 2x^2
The height h is 5 inches shorter than the base, so
h = (base length) - 5
h = x-5
Each lateral side is of area h*x = (x-5)*x = x^2-5x
There are 4 lateral sides
Total lateral area = 4*(area of one lateral side)
Total lateral area = 4*(x^2-5x)
Total lateral area = 4*x^2-4*5x
Total lateral area = 4*x^2-20x
Add the total lateral area (4x^2-20x) to the total base area (2x^2)
Doing so gets us
S(x) = Total Surface Area
S(x) = (Area of bases) + (area of lateral sides)
S(x) = (2x^2) + (4x^2-20x)
S(x) = (2x^2+4x^2) - 20x
S(x) = 6x^2 - 20x
which is why the answer is choice D
solved
general
10 months ago
7947