BRAINLIEST!!!What is the trigonometric ratio for sin S? Enter your answer, as a simplified fraction, in the boxes.
Question
Answer:
Answer: [tex]\frac{8}{17}[/tex] or 8:17Step-by-step explanation:For any angle x (other than right angle) in a right triangle ,the trigonometric ratio of sin x is given by :-[tex]\sin x=\frac{\text{side opposite to x}}{\text{Hypotenuse}}[/tex]Given: A right triangle with hypotenuse = 68 unitsThe side adjacent to S = 60Let h be the side opposite to S, then using Pythagoras in the given right triangle, we get[tex](68)^2=60^2+h^2\\\\\Rightarrow\ h^2=68^2-60^2\\\\\Rightarrow\ h^2=1024\\\\\Rightarrow\ h=\sqrt{1024}=32[/tex] Thus, the side opposite to S = 32 unitsNow, the trigonometric ratio for sin S is given by :-[tex]\sin S=\frac{\text{side opposite to S}}{\text{Hypotenuse}}\\\\\Rightarrow\sin S=\frac{32}{68}=\frac{8}{17}[/tex]Hence, the trigonometric ratio for sin S =[tex]\frac{8}{17}[/tex] or 8:17
solved
general
10 months ago
4488