it’s literal equations and i really need help
Question
Answer:
Answer:Part 1) [tex]x=\frac{g}{c}[/tex]Part 2) [tex]a=\frac{1}{3b}[/tex]Part 3) [tex]a=\frac{n+p}{m}[/tex]Part 4) [tex]x=g-y+c[/tex]Part 5) [tex]x=\frac{z}{m-1}[/tex]Part 6) [tex]a=\frac{g+b}{c}[/tex]Part 7) [tex]b=\frac{A}{h}[/tex]Part 8) [tex]W=\frac{P}{2}-L[/tex]Part 9) [tex]d=2Q-c[/tex]Part 10) [tex]a=\frac{Q}{3+5c}[/tex]Part 11) [tex]N=\frac{A)}{P-IR}[/tex]Part 12) [tex]b=P-a-c[/tex]Step-by-step explanation: Part 1) we have[tex]g=xc[/tex]solve for xThat means---> Isolate the variable xDivide by c both sides[tex]\frac{g}{c}=\frac{xc}{c}[/tex]simplify[tex]x=\frac{g}{c}[/tex]Part 2) we have[tex]12ab=4[/tex]solve for aThat means---> Isolate the variable aDivide by 12b both sides[tex]\frac{12ab}{12b}=\frac{4}{12b}[/tex]simplify[tex]a=\frac{1}{3b}[/tex]Part 3) we have[tex]am=n+p[/tex]solve for aThat means---> Isolate the variable aDivide by m both sides[tex]\frac{am}{m}=\frac{n+p}{m}[/tex]simplify[tex]a=\frac{n+p}{m}[/tex]Part 4) we have[tex]g=x-c+y[/tex]solve for xThat means---> Isolate the variable xSubtract y both sides[tex]g-y=x-c+y-y[/tex][tex]g-y=x-c[/tex]Adds c both sides[tex]g-y+c=x-c+c[/tex][tex]g-y+c=x[/tex]rewrite[tex]x=g-y+c[/tex]Part 5) we have[tex]xm=x+z[/tex]solve for xThat means---> Isolate the variable xSubtract x both sides[tex]xm-x=x+z-x[/tex][tex]xm-x=z[/tex]Factor x left side[tex]x(m-1)=z[/tex]Divide by (m-1) both sides[tex]\frac{x(m-1)}{m-1}=\frac{z}{m-1}[/tex][tex]x=\frac{z}{m-1}[/tex]Part 6) we have[tex]g=ca-b[/tex]solve for aThat means---> Isolate the variable aAdds b both sides[tex]g+b=ca-b+b[/tex][tex]g+b=ca[/tex]Divide by c both sides[tex]\frac{g+b}{c}=\frac{ca}{c}[/tex][tex]a=\frac{g+b}{c}[/tex]Part 7) we have[tex]A=bh[/tex]solve for bThat means---> Isolate the variable bDivide by h both sides[tex]\frac{A}{h}=\frac{bh}{h}[/tex]simplify[tex]b=\frac{A}{h}[/tex]Part 8) we have[tex]P=2L+2W[/tex]solve for WThat means---> Isolate the variable WSubtract 2L both sides[tex]P-2L=2L+2W-2L[/tex]simplify[tex]P-2L=2W[/tex]Divide by 2 both sides[tex]\frac{P-2L}{2}=\frac{2W}{2}[/tex]simplify[tex]W=\frac{P-2L}{2}[/tex][tex]W=\frac{P}{2}-L[/tex]Part 9) we have[tex]Q=\frac{c+d}{2}[/tex]solve for dThat means---> Isolate the variable dMultiply by 2 both sides[tex]2Q=(2)\frac{c+d}{2}[/tex]simplify[tex]2Q=c+d[/tex]subtract c both sides[tex]2Q-c=c+d-c[/tex][tex]2Q-c=d[/tex]rewrite[tex]d=2Q-c[/tex]Part 10) we have[tex]Q=3a+5ac[/tex]solve for aThat means---> Isolate the variable aFactor the variable a in the right side[tex]Q=a(3+5c)[/tex]Divide by (3+5c) both sides[tex]\frac{Q}{3+5c}=\frac{a(3+5c)}{3+5c}[/tex]simplify[tex]a=\frac{Q}{3+5c}[/tex]Part 11) we have[tex]I=\frac{PN}{RN+A}[/tex]solve for NThat means---> Isolate the variable NMultiply in cross[tex]I(RN+A)=PN[/tex]Apply distributive property left side[tex]IRN+AI=PN[/tex]subtract PN both sides[tex]IRN+AI-PN=PN-PN[/tex][tex]IRN+AI-PN=0[/tex]subtract AI both sides[tex]IRN+AI-PN-AI=-AI[/tex][tex]IRN-PN=-AI[/tex]Factor N left side[tex]N(IR-P)=-AI[/tex]Divide by (IR-P) both sides[tex]\frac{N(IR-P)}{IR-P}=-\frac{A}{IR-P}[/tex]simplify[tex]N=-\frac{A}{IR-P}[/tex][tex]N=\frac{A}{P-IR}[/tex]Part 12) we have[tex]P=a+b+c[/tex]solve for bThat means---> Isolate the variable bsubtract (a+c) both sides[tex]P-(a+c)=a+b+c-(a+c)[/tex]simplify[tex]P-(a+c)=b[/tex]rewrite[tex]b=P-a-c[/tex]
solved
general
10 months ago
8740