What is the area of a triangle whose vertices are R(−4, 2),S(1, 2), and T(−5, −4)? Enter your answer in the box
Question
Answer:
ANSWER15 square units.
EXPLANATION
This triangle has one of its height(altitudes) falling outside the triangle.
We determine the base using absolute value method. This is because the coordinates of [tex]R(-4,2)[/tex] and [tex]S(1,2)[/tex] tell us that this line is horizontal. The y-values are constant.
Therefore [tex]|RS|=|1--4|[/tex]
[tex]\Rightarrow |RS|=|1+4|[/tex]
[tex]\Rightarrow |RS|=|5|[/tex]
[tex]\Rightarrow |RS|=5[/tex]
Also
The triangle is bounded between [tex]y=2[/tex] and [tex]y=-4[/tex].
Therefore the vertical height of interest,
[tex]|RT|=|-4-2|[/tex]
[tex]|RT|=|-6|[/tex]
[tex]|RT|=6[/tex]
We can now find the area using the formula
[tex]Area=\frac{1}{2}base\times height[/tex]
[tex]Area=\frac{1}{2}\times6 \times 5[/tex]
[tex]Area=3 \times 5[/tex]
[tex]Area=15[/tex] square units
solved
general
10 months ago
6806