Find the limit. lim θ→0 sin(3θ) θ + tan(4θ)

Question
Answer:
Answer:[tex]\displaystyle \lim_{\theta \to 0} \sin (3\theta)\theta + \tan (4\theta) = 0[/tex]General Formulas and Concepts:Pre-CalculusUnit CircleCalculusLimitsLimit Rule [Variable Direct Substitution]:                                                             [tex]\displaystyle \lim_{x \to c} x = c[/tex]Step-by-step explanation:Step 1: DefineIdentify[tex]\displaystyle \lim_{\theta \to 0} \sin (3\theta)\theta + \tan (4\theta)[/tex]Step 2: EvaluateLimit Rule [Variable Direct Substitution]:                                                    [tex]\displaystyle \lim_{\theta \to 0} \sin (3\theta)\theta + \tan (4\theta) = \sin(0) \cdot 0 + tan(0)[/tex]Simplify:                                                                                                         [tex]\displaystyle \lim_{\theta \to 0} \sin (3\theta)\theta + \tan (4\theta) = 0[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)Unit: Limits
solved
general 10 months ago 7113