Use synthetic division to determine whether the number k is an upper or lower bound (as specified for the real zeros of the function f). k = 2; f(x) = 2x3 + 4x2 + 2x - 4; Lower bound?

Question
Answer:
Answer: k = 2 is the upper bond of the given equation.Step-by-step explanation:Here, Given function,  [tex]f(x) = 2x^3 + 4x^2 + 2x - 4[/tex];Since, the coefficient of [tex]x^3[/tex] = 2The coefficient of [tex]x^2[/tex] = 4The coefficient of [tex]x[/tex] = 2And, the constant term = - 4By applying the synthetic division with 2,The terms in the upper row = 2, 4, 2 and - 4The terms in the middle row = 4, 16 and 36And, the terms in the bottom row = 2, 8, 18 and 32Since, 2> 0 and all the sign in the bottom row are positive.Thus, 2 is the upper bond for real roots of this equation.
solved
general 10 months ago 1774